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Abstract. Automatic extraction of surface models of both pelvis and
proximal femur of a hip joint from 3D CT images is an important and
challenging task for computer assisted diagnosis and planning of peri-
acetabular osteotomy (PAO). Due to the narrowness of hip joint space,
the adjacent surfaces of the acetabulum and the femoral head are hardly
distinguishable from each other in the target CT images. This paper
presents a fully automatic method for segmenting hip CT images using
random forest (RF) regression-based atlas selection and optimal graph
search-based surface detection. The two fundamental contributions of
our method are: 1) An efficient RF regression framework is developed
for a fast and accurate landmark detection from the hip CT images. The
detected landmarks allow for not only a robust and accurate initializa-
tion of the atlases within the target image space but also an effective
selection of a subset of atlases for a fast atlas-based segmentation; and
2) 3-D graph theory-based optimal surface detection is used to refine the
extraction of the surfaces of the acetabulum and the femoral head with
the ultimate goal to preserve hip joint structure and to avoid penetra-
tion between the two extracted surfaces. Validation on 30 hip CT images
shows that our method achieves high performance in segmenting pelvis,
left proximal femur, and right proximal femur with an average accuracy
of 0.56 mm, 0.61 mm, and 0.57 mm, respectively.

1 Introduction

Developmental dysplasia of hip (DDH) is a congenital defect that seriously af-
fects young people nowadays. In many treatment procedures for patients with
DDH, periacetabular osteotomy (PAO) recently becomes a common surgical in-
tervention [1], aiming to improve ability of weight bearing and stability of the
diseased hip joint. To reach this goal, knowing acetabular coverage, which is
defined as a ratio between the femoral head surface covered by the acetabulum
and the complete femoral head surface, is important for operative planning for
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PAO. For this purpose, we need to extract surface models of both the pelvis and
the proximal femur from hip CT images.

Automatic extraction of the surface models of both the pelvis and the proxi-
mal femur from hip CT images comprises two key steps. Firstly, both anatomical
structures have to be detected in the target volume data and secondly, both mod-
els need to be segmented. Furthermore, the fact that the two structures compose
a hip joint should not be neglected. Otherwise, the resultant models may pene-
trate each other due to the narrowness of the hip joint and hence do not represent
a true hip joint.

For detection, reported methods in literature address the problem either by
assuming an user-supplied initialization [2, 3] or by using Generalized Hough
Transform (GHT) [4, 5]. For segmentation, both multi-atlas-based segmentation
methods [6–8] and statistical shape model (SSM)-based segmentation methods
[2–5, 9, 10] are proposed. Here we define an atlas as a pair of data consisting of
a CT volume and its corresponding segmentation. Given a set of atlases, atlas-
based segmentation methods segment a target volume by registering the atlases
to the volume first, followed by a label fusion process. Multi-atlas-based segmen-
tation methods may be applicable for extraction of surface models of individual
structures of the hip joint, but they cannot guarantee the preservation of the
hip joint space and the prevention of the penetration of the extracted surface
models. The other segmentation option is the SSM-based methods, which per-
form an adaption of the SSM to the target image data. Similar to atlas-based
methods, conventional SSM-based methods are difficult, if not impossible, to
guarantee the preservation of the hip joint structure [2–4, 9]. This problem is
recently addressed by introducing an articulated statistical shape model (aSSM)
[5]. Another solution is to simultaneously detecting both surfaces of the adja-
cent structures based on graph optimization theory [10]. By incorporating prior
knowledge about spatial relationship in the graph optimization, the adjacent
surfaces can be segmented without penetration to each other.

In this paper, we propose a two-stage automatic hip CT segmentation method.
In the first stage, we use a multi-atlas-based method to segment the regions of
the pelvis and the bilateral proximal femurs. An efficient random forest (RF)
regression-based landmark detection method is developed to detect landmarks
from the target CT images. The detected landmarks allow for not only a robust
and accurate initialization of the atlases within the target image space but also
an effective selection of a subset of atlases for a fast atlas-based segmentation.
In the second stage, we refine the segmentation of the hip joint area using graph
optimization theory-based multi-surface detection [11, 12], which guarantees the
preservation of the hip joint space and the prevention of the penetration of the
extracted surface models with a carefully constructed graph. Different from the
method introduced in [10], where the optimal surfaces are detected in the original
CT image space, here we propose to first unfold the hip joint area obtained from
the multi-atlas-based segmentation stage using a spherical coordinate transform
and then detect the surfaces of the acetabulum and the femoral head in the
unfolded space. By unfolding the hip joint area using the spherical coordinate
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Fig. 1. The flowchart of our proposed segmentation method

transform, we convert the problem of detection of two half-spherically shaped
surfaces of the acetabulum and the femoral head in the original image space to
a problem of detection of two terrain-like surfaces in the unfolded space, which
can be efficiently solved using the methods presented in [11, 12]. Fig. 1 presents
a schematic overview of the complete workflow of our method.

2 Multi-atlas based hip CT segmentation

2.1 Landmark detection by fast random forest regression

Basic algorithm. We have a separate RF landmark detector for each landmark.
During training, in each training image, we sample a set of image volumes around
the ground-truth landmark position which is known. Each sampled volume is
represented by its visual feature fi ∈ Rdf and the displacement di ∈ R3 from
its center to the landmark (Fig. 2(a)). Let us denote all the sampled volumes in
all training images as {Pi = (fi,di)}i=1...N (Fig. 2(b)). The goal is then to learn
a mapping function φ : Rdf → R3 from the feature space to the displacement
space. Principally, any regression method can be used. In this paper, similar to
[13, 14], we utilize the random forest regressors [15].

Once the regressor is trained, given a new image (Fig. 2(c)), we randomly
sample another set of volumes {P ′k = (f ′k, c

′
k)}k=1...N ′ all over the image (or a

region of interest if an initial guess of the landmark position is known), where
f ′k and c′k are the visual feature and center coordinate of the kth volume,
respectively (Fig. 2(d)). Through the trained regressor φ, we can calculate the
predicted displacement d′k = φ(f ′k), and then d′k + c′k becomes the prediction
of the landmark position by a single volume P ′k (Fig. 2(e)). Note that each tree
in the random forest will return a prediction. Therefore, supposing that there are
t trees in the forest, we will get N ′ × t predictions. These individual predictions
are very noisy, but when combined, they approach an accurate prediction. To
this end, we consider each single vote as a small Gaussian distribution. We
developed a fast probability aggregating algorithm as described below to add
these distributions to get a soft probability map called response volume which
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Fig. 2. The RF training and landmark detection. Illustration on coronal slice for easy
understanding. (a) A volume sampled around the true landmark position. (b) Multiple
sampled training volumes from one atlas. (c) A target image. (d) Multiple sampled test
volumes over target image. (e) Each volume gives a single vote for landmark position.
(f) Response volume calculated using improved fast Gaussian transform.

gives, for every position of the CT volume, its probability of being the landmark
(Fig. 2(f)).

Fast probability aggregation. As described above, N ′×t predictions are pro-
duced to detect each landmark. We consider each prediction a Gaussian model
N ∼ (d̄k, Σ(dk)), where d̄k and Σ(dk) = diag(σ2

k,x σ
2
k,y σ

2
k,z ) are mean and co-

variance (which can be calculated from the displacements of the training samples
that arrived at particular leaf node). All the N ′× t predictions are accumulated
to compute the likelihood of being a true landmark position for all M voxeles
in the image. This finally yields a response volume for each landmark. Once
the response volume has been obtained for each landmark, the position mode is
selected as the landmark position.

The computational time of landmark prediction is mainly on multivariate
Gaussian accumulation which is usually computed using

G(yi) =

N ′×t∑
k

1√
(2π)

3|Σ(dk)|
exp(−1

2
(dyi

− d̄k)TΣ(dk)
−1

(dyi
− d̄k)) (1)

where dyi
= yi−xk, yi is a voxel in target image and xk is the center of volume k.

For all of the Nl landmarks, such calculation will result in prohibitively expensive
computation time of O(M ×N ′ × t×Nl) on a 3D CT image with M voxels. In
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Fig. 3. A schematic view illustrating how to compute the visual feature of a sampled
sub-volume for RF training and regression. Left: a sub-volume is sampled from a hip
joint CT volume. Middle: we subdivide the sampled sub-volume into q × q × q blocks.
Right: for each block, we compute its mean and variance using the integral image
technique

this paper, we propose to approximate Eq.1 by:

G(yi) =

N ′×t∑
k

Wk · e(‖dyi
−d̄k‖2/h2) (2)

Here we rewrite the Eq. 1 by introducing a constant kernel size of h, and mov-
ing the constrains of the variance out of the exponential part by introducing a
weight Wk = 1/σk,xσk,yσk,z. With such an approximation, we develop an ef-
ficient probability aggregation strategy based on the Improved Fast Gaussian
Transform (IFGT) [16] to calculate the response volumes with highly reduced
time of O((M +N ′ × t)×Nl).

Visual feature. As for the visual feature over the sampled sub-volume, we use
mean and variance of intensities in a small volume obtained by subdividing the
sampled sub-volume. In this paper, we subdivide each sampled sub-volume into a
grid of q×q×q blocks (see Fig. 3 for details). To accelerate the feature extraction
within each block, we use the well-known integral image technique as introduced
in [17]. Details about how to compute the integral image of a quantity can be
found in [17]. The quantity can be the voxel intensity value or any arithmetic
computation on the intensity value. Advantage of using integral image lies in the
fact that once we obtain an integral image of the quantity over the complete hip
CT volume, the sum of the quantity in any sub-volume can be calculated quickly
in constant time O(1) regardless of the size of the volume [17]. Here we assume
that we already computed the integral image of the voxel intensity I and the
integral image of the squared voxel intensity S of the complete hip CT volume
using the technique introduced in [17]. We then compute the mean E[X] and
the variance V ar(X) of the intensity value of any block (Fig. 3, right) as:

E [X] = (I (h)− I (d)− I (f)− I (g) + I (b) + I (c) + I (e)− I (a))/N
E
[
X2
]

= (S (h)− S (d)− S (f)− S (g) + S (b) + S (c) + S (e)− S (a))/N

V ar (X) = E
[
X2
]
− (E[X])

2
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where {a, . . .h} ∈ R3 are the eight vertices of a block and N is the number
of voxels within the block, as shown in Fig.3, right.

2.2 Atlas initialization and atlas-based segmentation

Using the detected Nl anatomical landmarks, scaled rigid registrations are per-
formed to align all the NA atlases to the target image space. Then we select
Ns most similar atlases for the given target image. This is achieved by compar-
ing the sum of the distance of the landmarks for all the aligned atlases after
the scaled rigid registration . The selected atlases are further registered to the
target image with a Markov Random Field (MRF) based non-rigid registration
[18]. We then use the selected atlases to generate probabilistic atlas (PA) for
pelvis, bilateral proximal femurs and background following the idea introduced
in [19]. The generated PAs are further incorporated to a Maximum-a-Posteriori
(MAP) estimation which is then optimized by a graph cut method [20] to obtain
segmentation results.

3 Graph optimization based hip joint surface detection

3.1 Problem formulation

After we extract surface models of the pelvis and femur using multi-atlas based
segmentation, we expect to refine the hip joint segmentation in the second stage
by separating two surfaces of the adjacent structures, i.e., separating the surface
of the acetabulum from the surface of the femoral head. In the CT image space,
both the acetabulum and the femoral head are ball-like structures and their
surfaces can be approximately represented as half-spherically shaped models. To
separate these two surfaces, directly applying graph optimization-based surface
detection in the CT image space as described in [10, 12] would be an option.
However, construction of a graph in the original CT image is not straightforward
and requires finding correspondences between two adjacent surfaces obtained
from a rough segmentation stage as done in [10, 12], which is challenging.

In our method, instead of performing surface detection in the original CT
image space, we first define a hip joint area in the CT image based on the multi-
atlas-based segmentation results, and then unfold this area using a spherical
coordinate transform as shown in Fig.4. Since the spherical coordinate transform
converts a half-spherically shaped surface to a planar surface, the surfaces of the
acetabulum and the femoral head can therefore be unfolded to two terrain-like
surfaces with a gap (joint space) between them as shown in Fig.4. We reach this
goal with following steps:

1. Detecting rim points of the acetabulum from segmented surface model of the
pelvis using the method that we developed before [21] (Fig.4: 1).

2. Fitting a circle to the detected rim points, determining radius Rc and center
of the circle, as well as normal to the plane where the fitted circle is located
(Fig.4: 2).
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3. Constructing a spherical coordinate system as shown in Fig.4: 3, taking the
center of the fitted circle as the origin, the normal to the fitted circle as
the fixed zenith direction, and one randomly selected direction on the plane
where the fitted circle is located as the reference direction on that plane.
Now, the position of a point in this coordinate system is specified by three
numbers: the radial distance R of that point from the origin, its polar angle
Θ measured from the zenith direction and the azimuth angle Φ measured
from the reference direction on the plane where the fitted circle is located.

4. Sampling points in the spherical coordinate system from the hip joint area
(see Fig.4: 4) using a radial resolution of 0.25 mm and angular resolutions of
0.03 radians (for both polar and azimuth angles). Furthermore, we require
the sampled points satisfying following conditions:Rc + 10 ≤ R ≤ Rc/2

0 ≤ Θ ≤ π/2
0 ≤ Φ ≤ 2π

(3)

5. Getting corresponding intensity values of the sampled points from the CT
image, which finally forms an image volume I(θ, ϕ, r) (Fig.4: 5), where
0 ≤ r ≤

⌈
(10 + Rc

2 )/0.25
⌉
, 0 ≤ θ ≤ dπ/0.06e and 0 ≤ ϕ ≤ d2π/0.03e.

The dimension of r depends on the radius of the fitted circle while the di-
mensions of θ and ϕ are fixed. To easy the description later, here we define
the dimension of r as Dr.

Fig.5 shows an example of the unfolded volume I(θ, ϕ, r) of a hip joint.
With such an unfolded volume, graph construction and optimal multiple-surface
detection will be straightforward when the graph optimization-based multiple-
surface detection strategy as introduced in [11, 12] is used.

3.2 Graph construction for multi-surface detection

For the generated volume I(θ, ϕ, r) as shown in Fig.5, we assume that r is im-
plicitly represented by a pair of (θ, ϕ), e.g. r = p(θ, ϕ). For a fixed (θ, ϕ) pair, the
voxel subset {I(θ, ϕ, r)|0 ≤ r < Dr} forms a column along the r−axis and is de-
fined as Col(p). Each column has a set of neighbors and in this paper 4-neighbor
system is adopted. The problem is now to find k coupled surfaces such that each
surface intersects each column exactly at one voxel. In our case, we expect to
detect two adjacent surfaces of a hip joint, i.e., the surface of the acetabulum Sa
and the surface of the femoral head Sf . To accurately detect these two surfaces
using graph optimization-based approach, following geometric constraints need
to be considered:

1. For each individual surface, the shape changes of this surface on two neigh-
boring columns Col(p) and Col(q) are constrained by smoothness conditions.
Specifically, if Col(p) and Col(q) are neighbored columns along the θ−axis,
for each surface S (either Sa or Sf ), the shape change should satisfy the con-
straint of |S(p)−S(q)| = |rp−rq| ≤ ∆θ, where rp = p(θ1, ϕ) and rq = q(θ2, ϕ)
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Fig. 4. A schematic illustration of defining and unfolding a hip joint. Please see text
in Section 3.1 for a detailed explanation.

are coordinate values of the surface S (either Sa or Sf ) intersecting columns
Col(p) and Col(q), respectively. The same constraint could also be applied
along the ϕ− axis with a smoothness parameter ∆ϕ.

2. For the pair of surfaces Sa and Sf , their surface distance in the same column
is constrained. For example, in column Col(p), the distance between these
two surface should be constrained in a specified range of 0 ≤ δlp ≤ (|Sa(p)−
Sf (p)|) ≤ δup . In addition, Sf requires to be located below the Sa (as shown
in Fig.5).

To enforce above geometric constraints, three types of arcs are constructed to
define a directed graph G = {Ga ∪Gs} (see Fig.6 for details), where Ga and Gs
are two subgraphs and each for detecting one surface of Sa and Sf , respectively.
For each subgraph, we construct both intra- and inter- column arcs. We also
construct inter-surface arcs between two subgraphs Ga and Gs, following the
graph construction methods introduced in [11, 12].

Intra-column arcs: This type of arcs is added to ensure that the target surface
intersects each column at exactly one position. In our case, along each column
p(θ, ϕ), every node V (θ, ϕ, r) has a directed arc to the node immediately below
it V (θ, ϕ, r − 1) with +∞ weight (Fig.6 left).

Inter-column arcs: This type of arcs is added to constrain the shape changes
of each individual surface S on neighboring columns under a 4-neighborhood
system. With two pre-defined smoothness parameters ∆θ and ∆ϕ, we construct
these arcs with +∞ weight along both the θ−axis and the ϕ−axis (Fig.6 left).
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Fig. 5. An example of unfolded volume I(θ, ϕ, r) of a hip joint, visualized in 2D slices.
Left: a 2-D ϕ-r slice. Right: a 2-D θ-r slice. In both slices, the green line indicates the
surface of the femoral head and the red line indicates the surface of the acetabulum.
The gap between these two surface corresponds to the joint space of the hip.

In summary, we have arcs:

E =


{< V (θ, ϕ, r), V (θ + 1, ϕ,max(0, r −∆θ)) >}∪
{< V (θ, ϕ, r), V (θ − 1, ϕ,max(0, r −∆θ)) >}∪
{< V (θ, ϕ, r), V (θ, ϕ+ 1,max(0, r −∆ϕ)) >}∪
{< V (θ, ϕ, r), V (θ, ϕ− 1,max(0, r −∆ϕ)) >}

(4)

To get a smooth segmentation, we further enforce soft smoothness shape
compliance by adding another type of intra-column arcs (Fig.6 left) [12]:

E =


{< V (θ, ϕ, r), V (θ + 1, ϕ, r) > |r ≥ 1}∪
{< V (θ, ϕ, r), V (θ − 1, ϕ, r) > |r ≥ 1}∪
{< V (θ, ϕ, r), V (θ, ϕ+ 1, r) > |r ≥ 1}∪
{< V (θ, ϕ, r), V (θ, ϕ− 1, r) > |r ≥ 1}

(5)

Again we construct these arcs along both the θ − axis and the ϕ − axis
using a 4-neighborhood system. The a prior shape compliance smoothness en-
ergy that assigned to these arcs are determined by a non-decreasing function
fp,q(|S(p)− S(q)|), where |S(p)− S(q)| represent the shape change (determined
by the smoothness parameters ∆θ and ∆ϕ) for a surface S on neighbored
columns Col(p) and Col(q). We select a linear function fp,q(|S(p) − S(q)|) =
a(|S(p) − S(q)|) + b, following the method introduced in [12]. Thus, along the
θ−axis, we assign a weight a to the arcs. Likewise, for the arcs along the ϕ−axis,
we assign a similar weight for each arc.

Inter-surface arcs: This type of arcs is added to constrain surface distance
between Sa and Sf in each column. In our case Sf is required to be below the Sa.
Thus, assuming that distance in column p between surfaces Sa and Sf ranges
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Fig. 6. Graph construction for detecting adjacent two surfaces of a hip joint. An exam-
ple is presented in 2-D r-θ slice from the unfolded volume I(θ, ϕ, r). Left: intra-column
(black arrows) and inter-column(red and blue) arcs for each subgraph; right: inter-
surface arcs to connect two subgraphs. Please note that these two subgraphs share the
same nodes as well as the same inter- and intra-column arcs. The inter-surface arcs
are constructed between the corresponding two columns which have exactly the same
column of voxels in the unfolded volume.

from δlp to δup , we add the following arcs (Fig.6 right):

Es =


{< Va(θ, ϕ, r), Vf (θ, ϕ, r − δup ) > |r ≥ δup}∪
{< Vf (θ, ϕ, r), Va(θ, ϕ, r + δlp) > |r < R− δlp}∪
{< Va(0, 0, δlp), Vf (0, 0, 0) >}

(6)

where Va and Vf denote the node in the corresponding column from each sub-
graph as shown in (Fig.6 right). For each column p, we have a different distance
range (δlp, δ

u
p ) that is statistically learned from a set of training data.

By adding all the arcs as described above, we establish a directed graph
G = (V,E), where V = Va∪Vf and E = Ea∪Ef ∪Es. Here, Va and Vf are node
sets from each subgraph, Ea and Ef are intra- and inter-column arcs from each
subgraph, and Es is the inter-surface arcs between two subgraphs. In order to
detect surfaces based on graph optimization, a new digraph Gst(V ∪ {s, t}, E ∪
Est) is defined. This is achieved by adding a source node s and a sink node t as
well as new edge set Est which includes the edges between nodes in the graph G
and the nodes of {s, t}. Then surface detection can be solved using the minimum
s-t cuts established by Kolmogorov et al. [22]. We add new edges for the edge
set Est following the method introduced in [11]. The most important point here
is to assign an appropriate penalty for each edge which is also called t− link. As
described in [11], the penalty for each t− link is determined by a pre-computed
cost of each node. In our method, a carefully designed node cost function is
calculated by considering both intensity information and a prior information.
In the next section, we will introduce how such a cost function is calculated for
each graph node.
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Fig. 7. Evaluation of the segmentation performance after each stage in the present
method. The average surface distance (mm) on 10 test images are shown in the figure.

3.3 Node cost function

Node cost function plays an important role for a successful surface detection. In
our method, we first encode the boundary information to the cost function using
the gradient information of each node following the method introduced in [11].
The negative magnitude of the gradient of the volume I(θ, ϕ, r) is computed at
each voxel as cedge(θ, ϕ, r) = −| 5 I(θ, ϕ, r)|. We give each node a weight as:

w(θ, ϕ, r) =

{
cedge(θ, ϕ, r) if z = 0
cedge(θ, ϕ, r)− cedge(θ, ϕ, r − 1) otherwise

(7)

These weights are then modified by adding three types of constraints from a
prior information: 1) The generated PA of the pelvis and the femur in the multi-
atlas based segmentation stage. 2) Intensity histograms of surface points which
approximately indicate the intensity distribution of the points on each surface.
They are statistically learned from a set of training data by extracting all the
points on manually segmented surfaces from each training data. We learned two
histograms, one for the acetabulum surface and the other for the femoral head
surface. 3) The orientation of the gradient along the r−axis, which is determined
by a sign function Sgn(Ii(θ, ϕ, r)−Ii(θ, ϕ, r−1)), where Ii(θ, ϕ, r) is the intensity
of voxel V (θ, ϕ, r).

The PA gives the probability of each voxel belonging to a specified bone
region (background, pelvis or bilateral proximal femurs). If any voxel have prob-
ability close or equal to 1 in the PA, it means that the atlases used for generating
PA voted for this voxel, and thus this voxel is more likely to appear inside the
bone region rather than on the surface of the bone. Considering that our purpose
is to detect the surfaces of the bones, we decrease the weights for such nodes by:

w′(θ, ϕ, r) =

{
w(θ, ϕ, r)− h · PA(θ, ϕ, r), if w(θ, ϕ, r) > 0
w(θ, ϕ, r) + h · PA(θ, ϕ, r), if w(θ, ϕ, r) ≤ 0

(8)

where h is a constant value and PA(θ, ϕ, r) is the probability for a voxel V (θ, ϕ, r).
For the nodes in the subgraph for detecting the surface of the acetabulum, we
perform such a modification using the PA of the pelvis. Likewise, we encode
information from the PA of the femur for the nodes in the other subgraph.
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Table 1. Surface distance (mm) between automatic and ground-truth segmentation
of the bilateral hip joints from 10 CT data. Results after stage I (multi-atlas-based
segmentation: MA) and after stage II (graph optimization-based surface detection:
GO) are shown, where LA stands for the left acetabulum, LFH for the left femoral
head, RA for the right acetabulum and RFH for the right femoral head.

Bone Stage CT 1 CT 2 CT 3 CT 4 CT 5 CT 6 CT 7 CT 8 CT 9 CT 10 Average

LA MA 0.42 0.30 0.24 0.24 0.26 0.30 0.46 0.40 0.29 0.35 0.33
GO 0.20 0.29 0.21 0.23 0.23 0.17 0.31 0.26 0.26 0.24 0.24

LFH MA 0.40 0.56 0.41 0.34 0.51 0.36 0.51 0.81 0.38 0.49 0.48
GO 0.30 0.25 0.24 0.37 0.33 0.32 0.41 0.64 0.31 0.27 0.34

RA MA 0.43 0.36 0.22 0.33 0.24 0.30 0.48 0.31 0.25 0.32 0.32
GO 0.23 0.23 0.18 0.30 0.17 0.22 0.22 0.21 0.22 0.30 0.23

RFH MA 0.40 0.42 0.54 0.29 0.34 0.39 0.55 0.52 0.43 0.53 0.44
GO 0.41 0.40 0.46 0.36 0.38 0.38 0.45 0.59 0.38 0.28 0.41

The intensity distribution of the bone surface points is limited in a specified
range. For voxels whose intensity values are in this specified range, they are more
likely to appear on the bone surfaces. We increase the weights for these nodes
using the associated intensity histograms of surface points that are learned from
a set of training data as described above.

w′′(θ, ϕ, r) =

{
w′(θ, ϕ, r) +m ·Hist(Ii(θ, ϕ, r)), if w(θ, ϕ, r) > 0
w′(θ, ϕ, r)−m ·Hist(Ii(θ, ϕ, r)), if w(θ, ϕ, r) ≤ 0

(9)

wherem is a constant value andHist(Ii(θ, ϕ, r)) is the corresponding value in the
associated histogram for voxel V (θ, ϕ, r) which have intensity value of Ii(θ, ϕ, r).
Please note that we have learned two intensity histograms, one for surface points
of the acetabulum and the other for the surface points of the femoral head. When
modifying the weights of nodes in each subgraph, the associated histogram is
used.

As shown in Fig.5, for voxels on the surface of the acetabulum, since the inten-
sity at V (θ, ϕ, r) is bigger than V (θ, ϕ, r− 1)), the value of the Sgn(Ii(θ, ϕ, r)−
Ii(θ, ϕ, r−1)) should be positive and we define the orientation of these voxels as
positive too. Similarly, for voxels on the surface of the femoral head, we define
their orientation in r − axis as negative. Therefore, for a node in the subgraph
for detecting the surface of the acetabulum, if its gradient orientation is not
consistent with our definition, we set its weight to 0. For a node in the subgraph
for detecting the surface of the femoral head, we perform a similar modification.

After we modify the weight for each node in the Graph Gst, we assign penalty
for each t-link based on the modified weight using the method introduced in[11].
Our problem is then to optimally detect two surfaces from the constructed graph,
which can be solved using the minimum s-t cuts algorithm [20, 22].
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Table 2. Comparison of the results achieved by the present method with those reported
in the literature.

Method Preserving Hip Joint Average SD (mm) Average DOC (%)

Lamecker et al. [9] No 1.80 -

Semi et al. [4] No 0.70 -

Kainmueller et al. [5] Yes 0.60 -

Yokota et al. [2] No 1.10 92.7

Yokota et al. [3] No 0.98 -

The present method Yes 0.58 94.7

4 Experiments and results

We evaluated the present method on hip CT data of 30 patients after ethical
approval. The intra-slice resolutions range from 0.576mm to 0.744mm while the
inter-slice resolutions are 1.6mm for all CT data. Manual segmentation of all 30
CT data were done by a trained rater. 20 of them were selected as the training
data both for the RF regression-based landmark detection and the multi-atlas-
based segmentation. The rest 10 datasets (20 hip joints) were used for evaluation.

As for performance evaluation, we computed two different metrics. First,
surface distance (SD) between automatic segmentation and ground-truth seg-
mentation are computed after each stage of the present method. Fig. 7 shows
the average SD which was computed on the entire pelvis and femur regions.
More specifically, our method achieves high performance in segmenting pelvis,
left proximal femur, and right proximal femur with an average accuracy of 0.56
mm, 0.61 mm, and 0.57 mm, respectively. Furthermore, we also looked at the
segmentation accuracy around the hip joint local areas which are important for
our target clinical applications. The local evaluation results are shown in Table
1. It is observed from Fig.7 that the segmentation results of the two stages in
the present method are quite close if we evaluate the performance in the entire
regions of the pelvis and the femur. However, when we focus on the local hip
joint area, one can find from Table 1 that the graph optimization-based sur-
face detection improves the hip joint segmentation accuracy. Second, we also
computed the Dice overlap coefficients (DOC) between automatic segmentation
and ground-truth segmentation. The present method achieved a mean DOC of
93.3±1.1%, 95.2±1.3%, and 95.5±0.8% for pelvis, left femur and right femur,
respectively.

We checked whether the present method could preserve the hip joint space
and prevent the penetration of the extracted surface models. For all the 20 hip
joints that were segmented with the present method, we have consistently found
that the hip joint spaces were preserved and that there was no penetration
between the extracted adjacent surface models. Fig. 8 shows a segmentation
example. From this figure, we can clearly see that the graph optimization-based
surface detection stage further improve the results from the multi-atlas-based
segmentation.
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Fig. 8. An example of segmenting a hip joint with the present method. Both 2D and
3D visualizations of results from different stages of our method are presented.

5 Discussions and Conclusion

The goal of the present study is to develop and validate a fully automatic hip
joint segmentation approach. Our experimental results showed that the present
method not only achieved a good overall segmentation accuracy for both the
pelvis and the proximal femur, but also had the advantages of preservation of
hip joint space and prevention of the penetration of the extracted adjacent sur-
face models, which are prerequisite conditions to use the segmented models for
computer assisted diagnosis and planning of PAO surgery.

The performance of the present method is compared with those of the state-
of-the-art hip CT segmentation methods [2–5, 9]. The comparison results are
summarized in Table 2. From this table, one can see that the performace of
the present method is comparable to other state-of-the-art hip CT segmentation
methods [2–5, 9].

In conclusion, we presented a fully automatic and accurate method for seg-
menting CT images of a hip joint. The strength of the present method lies
in the combination of a multi-atlas-based hip CT segmentation with a graph
optimization-based multi-surface detection. The present method can be extended
to segment CT data of other anatomical structures.
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